Like HowStuffWorks on Facebook!

How Your Immune System Works

T Cells

Helper T cells are actually quite important and interesting. They are activated by Interleukin-1, produced by macrophages. Once activated, Helper T cells produce Interleukin-2, then interferon and other chemicals. These chemicals activate B cells so that they produce antibodies. The complexity and level of interaction between neutrophils, macrophages, T cells and B cells is really quite amazing.

Because white blood cells are so important to the immune system, they are used as a measure of immune system health. When you hear that someone has a "strong immune system" or a "suppressed immune system", one way it was determined was by counting different types of white blood cells in a blood sample. A normal white blood cell count is in the range of 4,000 to 11,000 cells per microliter of blood. 1.8 to 2.0 helper T-cells per suppressor T-cell is normal. A normal absolute neutrophil count (ANC) is in the range of 1,500 to 8,000 cells per microliter. An article like Introduction to Hematology can help you learn more about white blood cells in general and the different types of white blood cells found in your body.

One important question to ask about white blood cells (and several other parts of the immune system) is, "How does a white blood cell know what to attack and what to leave alone? Why doesn't a white blood cell attack every cell in the body?" There is a system built into all of the cells in your body called the Major Histocompatibility Complex (MHC) (also known as the Human Leukocyte Antigen (HLA)) that marks the cells in your body as "you". Anything that the immune system finds that does not have these markings (or that has the wrong markings) is definitely "not you" and is therefore fair game. Encyclopedia Britannica has this to say about the MHC:

"There are two major types of MHC protein molecules--class I and class II--that span the membrane of almost every cell in an organism. In humans these molecules are encoded by several genes all clustered in the same region on chromosome 6. Each gene has an unusual number of alleles (alternate forms of a gene). As a result, it is very rare for two individuals to have the same set of MHC molecules, which are collectively called a tissue type. MHC molecules are important components of the immune response. They allow cells that have been invaded by an infectious organism to be detected by cells of the immune system called T lymphocytes, or T cells. The MHC molecules do this by presenting fragments of proteins (peptides) belonging to the invader on the surface of the cell. The T cell recognizes the foreign peptide attached to the MHC molecule and binds to it, an action that stimulates the T cell to either destroy or cure the infected cell. In uninfected healthy cells the MHC molecule presents peptides from its own cell (self peptides), to which T cells do not normally react. However, if the immune mechanism malfunctions and T cells react against self peptides, an autoimmune disease arises."

See Biology of the Immune System and Major Histocompatibility Complex for additional details.