White Blood Cells

White blood cells (WBCs), or leukocytes, are a part of the immune system and help our bodies fight infection. They circulate in the blood so that they can be transported to an area where an infection has developed. In a normal adult body there are 4,000 to 10,000 (average 7,000) WBCs per microliter of blood. When the number of WBCs in your blood increases, this is a sign of an infection somewhere in your body.

Here are the six main types of WBCs and the average percentage of each type in the blood:

  • Neutrophils - 58 percent
  • Eosinophils - 2 percent
  • Basophils - 1 percent
  • Bands - 3 percent
  • Monocytes - 4 percent
  • Lymphocytes - 4 percent

Most WBCs (neutrophils, eosinophils, basophils and monocytes) are formed in the bone marrow. Neutrophils, eosinophils and basophils are also called granulocytes because they have granules in their cells that contain digestive enzymes. Basophils have purple granules, eosinophils have orange-red granules and neutrophils have a faint blue-pink color. When a granulocyte is released into the blood, it stays there for an average of four to eight hours and then goes into the tissues of the body, where it lasts for an average of four to five days. During a severe infection, these times are often shorter.

Neutrophils are the one of the body's main defenses against bacteria. They kill bacteria by actually ingesting them (this is called phagocytosis). Neutrophils can phagocytize five to 20 bacteria in their lifetime. Neutrophils have a multi-lobed, segmented or polymorphonuclear nucleus and so are also called PMNs, polys or segs. Bands are immature neutrophils that are seen in the blood. When a bacterial infection is present, an increase of neutrophils and bands are seen.

Eosinophils kill parasites and have a role in allergic reactions.

Basophils are not well understood, but they function in allergic reactions. They release histamine (which causes blood vessels to leak and attracts WBCs) and heparin (which prevents clotting in the infected area so that the WBCs can reach the bacteria).

Monocytes enter the tissue, where they become larger and turn into macrophages. There they can phagocytize bacteria (up to 100 in their lifetime) throughout the body. These cells also destroy old, damaged and dead cells in the body. Macrophages are found in the liver, spleen, lungs, lymph nodes, skin and intestine. The system of macrophages scattered throughout the body is called the reticuloendothelial system. Monocytes stay in the blood for an average of 10 to 20 hours and then go into the tissues, where they become tissue macrophages and can live for months to years.

Neutrophils and monocytes use several mechanisms to get to and kill invading organisms. They can squeeze through openings in blood vessels by a process called diapedesis. They move around using ameboid motion. They are attracted to certain chemicals produced by the immune system or by bacteria and migrate toward areas of higher concentrations of these chemicals. This is called chemotaxis. They kill bacteria by a process called phagocytosis, in which they completely surround the bacteria and digest them with digestive enzymes.

In the next section, we'll take a closer look at lymphocytes and platelets.